A note on robust kernel inverse regression

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A note on shrinkage sliced inverse regression

We employ Lasso shrinkage within the context of sufficient dimension reduction to obtain a shrinkage sliced inverse regression estimator, which provides easier interpretations and better prediction accuracy without assuming a parametric model. The shrinkage sliced inverse regression approach can be employed for both single-index and multiple-index models. Simulation studies suggest that the new...

متن کامل

A robust least squares fuzzy regression model based on kernel function

In this paper, a new approach is presented to fit arobust fuzzy regression model based on some fuzzy quantities. Inthis approach, we first introduce a new distance between two fuzzynumbers using the kernel function, and then, based on the leastsquares method, the parameters of fuzzy regression model isestimated. The proposed approach has a suitable performance to<b...

متن کامل

A robust inverse regression estimator

A family of dimension reduction methods was developed by Cook and Ni [Sufficient dimension reduction via inverse regression: a minimum discrepancy approach. J. Amer. Statist. Assoc. 100, 410–428.] via minimizing a quadratic objective function. Its optimal member called the inverse regression estimator (IRE) was proposed. However, its calculation involves higher order moments of the predictors. ...

متن کامل

Robust Kernel-Based Regression

In this research, a robust optimization approach applied to support vector regression (SVR) is investigated. A novel kernel based-method is developed to address the problem of data uncertainty where each data point is inside a sphere. The model is called robust SVR. Computational results show that the resulting robust SVR model is better than traditional SVR in terms of robustness and generaliz...

متن کامل

Robust nonparametric kernel regression estimator

In robust nonparametric kernel regression context,weprescribemethod to select trimming parameter and bandwidth. Through solving estimating equations, we control outlier effect through combining weighting and trimming. We show asymptotic consistency, establish bias, variance properties and derive asymptotics. © 2016 Elsevier B.V. All rights reserved.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Statistics and Its Interface

سال: 2013

ISSN: 1938-7989,1938-7997

DOI: 10.4310/sii.2013.v6.n1.a5